Tag Archives: Zooniverse

A note from Chris Lintott

For more than a decade, I’ve been ending talks by looking forward to the rich data that will soon begin flowing from the Vera Rubin Observatory. The observatory’s magnificent new telescope, nearing its long-awaited first light on a mountaintop in Chile, will conduct a ten year survey of the sky, producing 30 TB of images and maybe ten million alerts a night, covering everything from asteroids to distant galaxies. 

A starry sky illuminates a hillside with a long building on the top. At one end is a square-ish telescope dome, which houses the telescope of the Vera Rubin Observatory.
The Vera Rubin Observatory Building, ready for action.

The Observatory has – from really early on – seen citizen science, and in particular working with the Zooniverse, as an important part of how they intend to make the most of this firehose of data. We’ve been working hard on things like making data easy to transfer across, designing tools for helping scientists building good projects and more. 

All of which is to say I’m very excited – as a Zooniverse person, and as an astronomer – about the opportunities ahead. To allow time for me to concentrate on making the most of it – and in particular, in learning how to find odd stuff alongside Zooniverse volunteers – I’ve decided it’s time for me to step down as Zooniverse Principal Investigator, a position I’ve held since…well, since before the Zooniverse existed. 

Chris Lintott, wearing a collared shirt, jumper and jeans, poses on a giant tardigrade throne.
Giving up the Principal Investigator’s Official Throne will be a hardship, but it’s time.

After 15 or so years, it’s well past time for other people to lead. Laura Trouille from the Adler Planetarium has been my co-PI since 2015, and will be taking over as Principal Investigator. Laura is brilliant, and has been the driving force behind much of what we’ve been doing for a long time. I’m confident in her, and along with her fabulous team, I’m excited to see where she leads this marvellous platform and project. With a growing partnership with NASA, new ideas in how to use Zooniverse in education and reaching new communities, and – of course – new projects launching each week, I genuinely think that we’re in a strong place to keep allowing everyone to participate in science. 

In terms of stepping down from this role, I’ll be more Joe Root than Stuart Broad (Note to Americans: This is a cricket reference) – there is a long-standing ‘joke’ that no-one actually leaves the Zooniverse – sticking around the team to serve as Senior Scientist, giving advice where needed and continuing to lead specific projects and efforts. The team in Oxford will work more closely than ever with the rest of the collaboration, and our plans for Rubin and the Zooniverse will be unaffected.

It is, however, strange to be contemplating a change after all this time. I’m immensely proud of the fact that once we stumbled onto the success of the original Galaxy Zoo (a story told in a very reasonably priced book…), we had the imagination not just to build another Galaxy Zoo (which we did – classifications still needed!) but a platform that covers such a wide variety of fields, and through which volunteers have contributed three-quarters of a BILLION classifications. Thanks to the support of all manner of organizations, I’m also very proud that we haven’t had to charge researchers for access to the Zooniverse; the only criteria that have ever mattered has been  whether a project will contribute to science and be welcomed by our volunteers. 

I’m so grateful to those who have lent their effort, energy and expertise to making a Zooniverse which is grander than I would ever have dared on my own. In particular: Arfon Smith, who created the original Zooniverse with me and took over from me as Director of Citizen Science at Adler, and Lucy Fortson, who has been the best grant-writer and collaborator I could wish for as well as putting up with my stresses more than anyone should have to. I’ll stop here, else I’ll end up listing all of the developers, researchers and volunteers who have made this unique project what it is.

Onwards! Let us make, and set the weather fair.

See you in the Zooniverse.

Chris Lintott

September 2023

Bursts from Space

This is a guest post by summer intern Anastasia Unitt.

The study of celestial objects creates a huge amount of data. So much data, that astronomers struggle to make use of it all. The solution? Citizen scientists, who lend their brainpower to analyse and catalogue vast swathes of information. Alex Andersson, a DPhil student at the University of Oxford, has been applying this approach to his field: radio astronomy, through the Zooniverse. I met with him via Zoom to learn about his project detecting rare, potentially explosive events happening far out in space.

Alex’s research uses data collected by a radio telescope located thousands of miles away in South Africa, named MeerKAT. The enormous dishes of the telescope detect radio waves, captured from patches of sky about twice the size of the full Moon. This data is then converted into images, which show the source of the waves, and into light curves, a kind of scatter plot which depicts how the brightness of these objects has changed over time. This information was initially collected for a different project, so Alex is exploiting the remaining information in the background- or, as he calls it: “squeezing science out of the rest of the picture.” The goal: to identify transient sources in the images, things that are changing, disappearing and appearing.

Historically, relatively few of these transients have been identified, but the many extra pairs of eyes contributed by citizen scientists has changed the game. The volume of data analysed can be much larger, the process far faster. Alex is clearly both proud of and extremely grateful to his flock of amateur astronomers. “My scientists are able to find things that using traditional methods we just wouldn’t have been able to find, [things] we would have missed.” The project is ongoing, but his favourite finding so far took the form of a “blip” his citizen scientists noticed in just two of the images (out of thousands). Alex explains: “We followed it up and it turns out it’s this star that’s 10 times further away than our nearest stellar neighbor, and it’s flaring. No one’s ever seen it with a radio telescope before.” His excitement is obvious, and justified. This is just one of many findings that may be previously unidentified stars, or even other kinds of celestial objects such as black holes. There’s still so much to find out, the possibilities are almost endless.

A range of light curve shapes spotted by Zooniverse citizen scientists performing classifications for Bursts from Space: MeerKAT

Unfortunately, research comes with its fair share of frustrating moments along with the successes. For Alex, it’s the process of preparing the data for analysis which has proved the most irksome. “Sometimes there’s bits in the process that take a long time, particularly messing with code. There can be so much effort that went into this one little bit, that even if you did put it in a paper is only one sentence.” These behind-the-scenes struggles are essential to make the data presentable to the citizen scientists in the first place, as well as to deal with the thousands of responses which come out the other side. He assures me it’s all worth it in the end.

As to where this research is headed next, Alex says the prospects are very exciting. Now they have a large bank of images that have been analysed by the citizen scientists, he can apply this information to train machine learning algorithms to perform similar detection of interesting transient sources. This next step will allow him to see “how we can harness these new techniques to apply them to radio astronomy – which again, is a completely novel thing.”

Alex is clearly looking forward to these further leaps into the unknown. “The PhD has been a real journey into lots of things that I don’t know, which is exciting. That’s really fun in and of itself.” However, when I ask him what his favourite part of this research has been so far, it isn’t the science. It’s the citizen scientists. He interacts with them directly through chat boards on the Zooniverse site, discussing findings and answering questions. Alex describes their enthusiasm as infectious – “We’re all excited about this unknown frontier together, and that has been really, really lovely.” He’s already busy preparing more data for the volunteers to examine, and who knows what they might find; they still have plenty of sky to explore.

Web Developer Internship – Oxford 2022

The Zooniverse team in Oxford, UK, is looking for a web developer intern to join us in summer 2022. If you’re looking to learn how to build websites and apps with a team of friendly developers, or if you just want an opportunity to flex your extant coding skills in an environment that loves scientific curiosity, then come have some tea with us!

The team here in the Zooniverse want to welcome more folks into the world of software development, and in turn, we want to learn from the unique ideas and experiences you can share.

You can find the full job details at https://jobs.zooniverse.org/#oxford-web-developer-internship . Note that you don’t need any existing software development skills to apply, just a genuine interest in learning.

Happy Year of the Tiger!

The 1st of February marked the start of Chinese New Year/Lunar New Year celebrations, so we here at the Zooniverse team wanted to wish everyone a happy and prosperous Year of the Tiger!

This year, we’d like to share a fun side project one of our developers (Shaun) created for the Chinese New Year: a small video game where you try to lead a big striped cat to an exit with a laser pointer. While the Zooniverse team takes our scientific work very seriously, we also enjoy doing some really goofy stuff in our free time.

Chinese New Year 2022 - Year of the Tiger greeting card. A man, in a Chinese New Year outfit, is distracting a tiger with a laser pointer. A woman, in the back, attempts to save some vases from being broken. Links to the CNY game-card at https://shaunanoordin.com/cny2022/
Disclaimer: please don’t try to actually play laser tag with real life tigers. 🐅

🎮 Play online at https://shaunanoordin.github.io/cny2022/ or at https://shaunanoordin.com/cny2022/ on any modern web browser.

If you too enjoy programming video games, you can take a look at the source code at https://github.com/shaunanoordin/cny2022 . And hey, if you just enjoy programming in general, be sure to check out https://github.com/zooniverse/ to see what the developers are doing to create a better Zooniverse experience.

Gong Xi Fa Cai (恭喜發財) everyone, and thanks for being part of the Zooniverse! ✨

Zooniverse Volunteers Discover More New Worlds

The volunteers on our Planet Hunters TESS project have helped discover another planetary system! The new system, HD 152843, consists of two planets that are similar in size to Neptune and Saturn in our own solar system, orbiting around a bright star that is similar to our own Sun. This exciting discovery follows on from our validation of the long-period planet around an evolved (old) star, TOI-813, and from our recent paper outlining the discovery of 90 Planet Hunters TESS planet candidates, which gives us encouragement that there are a lot more exciting systems to be found with your help!

Figure: The data obtained by NASA’s Transiting Exoplanet Survey Satellite which shows two transiting planets. The plot shows the brightness of the star HD 152843 over a period of about a month. The dips appear where the planets passed in front of the star and blocked some of its light from getting to Earth.


Multi-planet systems, like this one, are particularly interesting as they allow us to study how planets form and evolve. This is because the two planets that we have in this system must have necessarily formed out of the same material at the same time, but evolved in different ways resulting in the different planet properties that we now observe.


Even though there are already hundreds of confirmed multi-planet systems, the number of multi-planet systems with stars that are bright enough such that we can study them using ground-based telescopes remains very small. However, the brightness of this new citizen science found system, HD 152843, makes it an ideal target for follow-up observations, allowing us to measure the planet masses and possibly even probe their atmospheric composition.


This discovery was made possibly with the help of tens of thousands of citizen scientists who helped to visually inspect data obtained by NASA’s Transiting Exoplanet Survey Satellite, in the search for distant worlds. We thank all of the citizen scientists taking part in the project who continue to help with the discovery of exciting new planet systems and in particular to Safaa Alhassan, Elisabeth M. L. Baeten, Stewart J. Bean, David M. Bundy, Vitaly Efremov, Richard Ferstenou, Brian L. Goodwin, Michelle Hof, Tony Hoffman, Alexander Hubert, Lily Lau, Sam Lee, David Maetschke, Klaus Peltsch, Cesar Rubio-Alfaro, Gary M. Wilson, the citizen scientists who directly helped with this discovery and who have become co-authors of the discovery paper.


The paper has been published by the Monthly Notices of the Royal Astronomical Society (MNRAS) journal and you can find a version of it on arXiv at: https://arxiv.org/pdf/2106.04603.pdf.

SuperWASP Variable Stars – Update

The following is an update from the SuperWASP Vairable Stars research team. Enjoy!

Welcome to the Spring 2020 update! In this blog, we will be sharing some updates and discoveries from the SuperWASP Variable Stars project.

What are we aiming to do?

We are trying to discover the weirdest variable stars!

Stars are the building blocks of the Universe, and finding out more about them is a cornerstone of astrophysics. Variable stars (stars which change in brightness) are incredibly important to learning more about the Universe, because their periodic changes allow us to probe the underlying physics of the stars themselves.

We have asked citizen scientists to classify variable stars based on their photometric light curves (the amount of light over time), which helps us to determine what type of variable star we’re observing. Classifying these stars serves two purposes: firstly to create large catalogues of stars of a similar type which allows us to determine characteristics of the population; and secondly, to identify rare objects displaying unusual behaviour, which can offer unique insights into stellar structure and evolution.

We have 1.6 million variable stars detected by the SuperWASP telescope to classify, and we need your help! By getting involved, we can build up a better idea of what types of stars are in the night sky.

What have we discovered so far?

We’ve done some initial analysis on the first 300,000 classifications to get a breakdown of how many of each type of star is in our dataset.

So far it looks like there’s a lot of junk light curves in the dataset, which we expected. The programme written to detect periods in variable stars often picks up exactly a day or a lunar month, which it mistakes for a real period. Importantly though, you’ve classified a huge number of real and exciting light curves!

We’re especially excited to do some digging into what the “unknown” light curves are… are there new discoveries hidden in there? Once we’ve completed the next batch of classifications, we’ll do some more to see whether the breakdown of types of stars changes.

An exciting discovery…

In late 2018, while building this Zooniverse project, we came across an unusual star. This Northern hemisphere object, TYC-3251-903-1, is a relatively bright object (V=11.3) which has previously not been identified as a binary system. Although the light curve is characteristic of an eclipsing contact binary star, the period is ~42 days, notably longer than the characteristic contact binary period of less than 1 day.

Spurred on by this discovery, we identified a further 16 candidate near-contact red giant eclipsing binaries through searches of archival data. We were excited to find that citizen scientists had also discovered 10 more candidates through this project!

Figure 1: Artist’s impression of a contact binary star [Mark A. Garlick] Over the past 18 months, we’ve carried out an observing campaign of these 27 candidate binaries using telescopes from across the world. We have taken multi-colour photometry using The Open University’s own PIRATE telescope, and the Las Cumbres Observatory robotic telescopes, and spectroscopy of Northern candidates with the Liverpool Telescope, and Southern candidates using SALT. We’ve also spent two weeks in South Africa on the 74-inch telescope to take further spectroscopy.

Of the 10 candidate binaries discovered by citizen scientists, we were happy to be able to take spectroscopic observations for 8 whilst in South Africa, and we have confirmed that at least 2 are, in fact, binaries! Thank you citizen scientists!

Why is this discovery important?

Figure 2: V838 Mon and its light echo [ESA/NASA]

The majority of contact or near-contact binaries consist of small (K/M dwarf) stars in close orbits with periods of less than 1 day. But for stars in a binary in a contact binary to have such long periods requires both the stars to be giant. This is a previously unknown configuration…

Interestingly, a newly identified type of stellar explosion, known as a red nova, is thought to be caused by the merger of a giant binary system, just like the ones we’ve discovered.

Red novae are characterised by a red colour, a slow expansion rate, and a lower luminosity than supernovae. Very little is known about red novae, and only one has been observed pre-nova, V1309 Sco, and that was only discovered through archival data. A famous example of a possible red nova is the 2002 outburst in V838 Mon. Astronomers believe that this was likely to have been a red nova caused by a binary star merger, forming the largest known star for a short period of time after the explosion.

So, by studying these near-contact red giant eclipsing binaries, we have an unrivalled opportunity to identify and understand binary star mergers before the merger event itself, and advance our understanding of red novae.

What changes have we made?

Since the SuperWASP Variable Stars Zooniverse project started, we’ve made a few changes to make the project more enjoyable. We’ve reduced the number of classifications needed to retire a target, and we’ve also reduced the number of classifications of “junk” light curves needed to retire it. This means you should see more interesting, real, light curves.

We’ve also started a Twitter account, where we’ll be sharing updates about the project, the weird and wacky light curves you find, and getting involved in citizen science and astronomy communities. You can follow us here: www.twitter.com/SuperWASP_stars

What’s next?

We still have thousands of stars to classify, so we need your help!

Once we have more classifications, we will be beginning to turn the results into a publicly available, searchable website, a bit like the ASAS-SN Catalogue of Variable Stars (https://asas-sn.osu.edu/variables). Work on this is likely to begin towards the end of 2020, but we’ll keep you updated.

We’re also working on a paper on the near-contact red giant binary stars, which will include some of the discoveries by citizen scientists. Expect that towards the end of 2020, too.

Otherwise, watch this space for more discoveries and updates!

We would like to thank the thousands of citizen scientists who have put time into this Zooniverse project. If you ever have any questions or suggestions, please get in touch.

Heidi & the SuperWASP Variable Stars team.

We Are Still here

These are strange times we live in. With many people ill or worried, and communities all over the world in lockdown or cutting out social contact in order to try and control the spread of the novel coronavirus, it’s hard to work out what the future holds.

The Zooniverse team – including our teams in Oxford and in Chicago – are all working from home, and we’re struggling to master how to communicate and work in this odd situation. So far we’ve encountered all sorts of weird glitches while trying to keep in touch.

Zoom backgrounds can be weird and terrifying, as demonstrated here by Sam.
Why am I the only one with a profile picture?

But we are still here! As we know lots of you are turning to Zooniverse for a distraction while your lives are disrupted, we’ve asked our research teams to pay particular attention to their projects and to be even more present online during this time. We’ll try and bring you more news from them over the next few weeks.

Anyway, if any of you would like to distract yourselves by taking part and contributing to one of our projects, we’ve made it easier to find a new project to dive into. The top of our projects page now highlights selected projects – they will change frequently, and might be topical, timely, particularly in need of your help – or just our favourites!

Zooniverse projects succeed because they’re the collective work of many thousands of you who come together to collaborate with our research teams – and a little bit of collective action in the world right now feels pretty good.

Look after yourselves, and see you in the Zooniverse.

Chris

Zooniverse is 10 today!

Zooniverse is ten years old! On 12th December 2009, Zooniverse.org sputtered into life, celebrated with a post on this very blog (https://blog.zooniverse.org/2009/12/12/the-zooniverse-is-go/). Truth be told, there wasn’t a huge amount to show – the only project there was our first, Galaxy Zoo, which had been running for a couple of years by that point. What a contrast to today’s bustling home page, with 229 live projects for you to choose from. Early in 2010 two new projects – Solar Stormwatch and Moon Zoo – were launched, before Old Weather became our first project based here on Earth instead of out in the cosmos.

To celebrate, we’re redoubling our efforts to reach two million volunteers. We’re about 50,000 short, so if every one in twenty of you invites a friend to join in we’ll be there in no time. We have a prize lined up for the lucky two millionth, and anyone who classifies on any project on that auspicious day will go into a draw for some Zooniverse swag.

Birthdays are also time for reflection. To be honest, I was a bit surprised when I realised that we were approaching this milestone birthday. Galaxy Zoo had arrived with a big bang, a sudden explosion of effort, but as the above description suggests Zooniverse grew more slowly, as project after project was added to our nascent platform. Over the years, we rebuilt the codebase (more than once), projects came and went, and the army of Zooniverse volunteers grew in strength and in numbers. Looking back, though, the decision we made to launch Zooniverse set in stone some important principles that still guide us today.

For starters, it meant that we were committed to building a universe of projects which volunteers could move easily between. Projects which were lucky enough to get publicity – featuring on BBC Stargazing Live, for example – thus benefited other projects by bringing new people into the Zooniverse community. We built a shared codebase, so that funding for a particular project could support the development of code that benefited everyone. For most participants, their experience of the Zooniverse is limited to the project they’re participating in, whether it involves penguins, papyri or planets, but these network effects have been hugely important in sustaining such a rich variety of projects for a decade.

We’ve always tried to make it as easy as possible for researchers to build the best projects they can imagine, investing in the project builder tool that now supports all of the projects listed on our homepage. The choice – made early – to present the Zooniverse as a tool that’s free for researchers to use has caused problems; we are almost completely dependent on grant funding, which is a risky way to run a railroad, to say the least. But it has meant that those researchers, often early in their careers, have been able to turn to Zooniverse for help without reservation, and I think we’ve had better results – and more fun – as a consequence. 

There have been so many great moments over the last ten years, but just for a bit of fun here are my top 3 favourites:

  1. First hearing the Solar Stormwatch results were good – realising the method doesn’t just work for Galaxy Zoo.
  2. Climbing up a hill in the Antarctic to retrieve Penguin Watch data.
  3. The morning where we thought Higgs Hunters volunteers had discovered something truly remarkable (sadly it turned out they hadn’t).

So here’s to ten years of the Zooniverse. At any point in the last decade, I’d have been wrong if I’d tried to predict what the next few years would bring. I’m looking forward to more adventures and surprises in our second decade!

Chris

PS I can’t possibly list all of the people who were instrumental in building and guiding the project over the years, but I hope the team will forgive me for mentioning Arfon Smith, my co-founder and the technical genius behind the Zooniverse’s first few years, Lucy Fortson, whose wisdom we’ve relied on from the start, and Lauras Whyte and Trouille who have in turn led the Adler team in Chicago through this mad decade. Special thanks too to the volunteers – all of you – but especially Elisabeth Baeten, Jules Wilkinson, and PMason, whose spirit and generosity is a constant source of wonder and inspiration. 

UKRI Citizen Science Exploration Grants

UK Research and Innovation have announced a scheme to support citizen science projects, focused especially on new and innovative uses. It seems like an excellent opportunity to experiment, or to work on designing a new project and we hope it persuades many more people to take the plunge and start using citizen science approaches in their research. More details at https://www.ukri.org/funding/funding-opportunities/citizen-science-exploration.

We at Zooniverse would be keen to help any UK-based researchers thinking of applying for such a grant – if you’re interested, or would like to discuss how you might use the Zooniverse platform, contact Grant Miller : grant@zooniverse.org

CELEBRATING CITIZEN SCIENCE DAY 2019, PT. 5

This coming Saturday 13th April is Citizen Science Day, an ‘annual event to celebrate and promote all things citizen science’. Here at the Zooniverse, one of our team members will be posting each day this week to share with you their favourite Zooniverse projects. Today’s post is from Grant Miller, project manager of the Zooniverse team at the University of Oxford.

Having been at the Zooniverse for almost six years and helped over one hundred research teams launch their project on the Zooniverse platform I find it very difficult to choose just one of them as my favourtie. However, unlike Helen did on Tuesday, I’m going to give it a try 😛

For me it’s got to be the very first project that  was pitched to me on my first  day of the job back in 2013 – Penguin Watch! Over the last decade the lead researcher Tom Hart and his team have been travelling to the Southern Ocean and Antarctica to place time-lapse cameras looking at penguin nests. They now collect so many images each year the cannot do their science without the help of the Zooniverse crowd. This projecy perfectly demonstrates the key elements which go into making a truly great citizen science project:

  1. It has a clear and relatable research goal: Help count penguins so we can understand how over-fishing and climate change is affecting their populations, and then use that information to influence policy makers.
  2. It has an extremely simple task that for now can only be done accurate by human eyes: Click on the penguins in the image. It’s so simple we have 4-year-old children helping their parents do it!
  3. It has an amazing and engaged research team and volunteer community: Even though they are a very small team the scientists take plenty of time to communicate with their volunteer community via the Talk area of the project, newsletters, and social  media channels. There is also a fantastic core group of volunteer moderators who put in so much effort to make sure the project is running as well as it should.

Half a million king penguins at St Andrews Bay, South Georgia.

In addition to all of this I was lucky enough to join them on one of their Antarctic expeditions last year, as they went down to maintain their time-lapse cameras and collect the data that goes into Penguin Watch. You can see my video diary (which I’m posting once per day on the run up to World Penguin Day on the 25th April) at daily.zooniverse.org.

Get involved in Penguin Watch today at www.penguinwatch.org.