Tag Archives: citizen science

Bursts from Space

This is a guest post by summer intern Anastasia Unitt.

The study of celestial objects creates a huge amount of data. So much data, that astronomers struggle to make use of it all. The solution? Citizen scientists, who lend their brainpower to analyse and catalogue vast swathes of information. Alex Andersson, a DPhil student at the University of Oxford, has been applying this approach to his field: radio astronomy, through the Zooniverse. I met with him via Zoom to learn about his project detecting rare, potentially explosive events happening far out in space.

Alex’s research uses data collected by a radio telescope located thousands of miles away in South Africa, named MeerKAT. The enormous dishes of the telescope detect radio waves, captured from patches of sky about twice the size of the full Moon. This data is then converted into images, which show the source of the waves, and into light curves, a kind of scatter plot which depicts how the brightness of these objects has changed over time. This information was initially collected for a different project, so Alex is exploiting the remaining information in the background- or, as he calls it: “squeezing science out of the rest of the picture.” The goal: to identify transient sources in the images, things that are changing, disappearing and appearing.

Historically, relatively few of these transients have been identified, but the many extra pairs of eyes contributed by citizen scientists has changed the game. The volume of data analysed can be much larger, the process far faster. Alex is clearly both proud of and extremely grateful to his flock of amateur astronomers. “My scientists are able to find things that using traditional methods we just wouldn’t have been able to find, [things] we would have missed.” The project is ongoing, but his favourite finding so far took the form of a “blip” his citizen scientists noticed in just two of the images (out of thousands). Alex explains: “We followed it up and it turns out it’s this star that’s 10 times further away than our nearest stellar neighbor, and it’s flaring. No one’s ever seen it with a radio telescope before.” His excitement is obvious, and justified. This is just one of many findings that may be previously unidentified stars, or even other kinds of celestial objects such as black holes. There’s still so much to find out, the possibilities are almost endless.

A range of light curve shapes spotted by Zooniverse citizen scientists performing classifications for Bursts from Space: MeerKAT

Unfortunately, research comes with its fair share of frustrating moments along with the successes. For Alex, it’s the process of preparing the data for analysis which has proved the most irksome. “Sometimes there’s bits in the process that take a long time, particularly messing with code. There can be so much effort that went into this one little bit, that even if you did put it in a paper is only one sentence.” These behind-the-scenes struggles are essential to make the data presentable to the citizen scientists in the first place, as well as to deal with the thousands of responses which come out the other side. He assures me it’s all worth it in the end.

As to where this research is headed next, Alex says the prospects are very exciting. Now they have a large bank of images that have been analysed by the citizen scientists, he can apply this information to train machine learning algorithms to perform similar detection of interesting transient sources. This next step will allow him to see “how we can harness these new techniques to apply them to radio astronomy – which again, is a completely novel thing.”

Alex is clearly looking forward to these further leaps into the unknown. “The PhD has been a real journey into lots of things that I don’t know, which is exciting. That’s really fun in and of itself.” However, when I ask him what his favourite part of this research has been so far, it isn’t the science. It’s the citizen scientists. He interacts with them directly through chat boards on the Zooniverse site, discussing findings and answering questions. Alex describes their enthusiasm as infectious – “We’re all excited about this unknown frontier together, and that has been really, really lovely.” He’s already busy preparing more data for the volunteers to examine, and who knows what they might find; they still have plenty of sky to explore.

A Sky Full of Chocolate Sauce: Citizen Science with Aurora Zoo

by Dr. Liz MacDonald and Laura Brandt

Viewing the aurora in person is a magnificent experience, but due to location (or pesky clouds) it’s not always an option. Fortunately, citizen science projects like Aurorasaurus and Zooniverse’s Aurora Zoo make it easy to take part in aurora research from any location with an internet connection. 

The Aurorasaurus Ambassadors group was excited to celebrate Citizen Science Month by inviting Dr. Daniel Whiter of Aurora Zoo to speak at our April meeting. In this post we bring you the highlights of his presentation, which is viewable in full here

To ASK the Sky for Knowledge

Far to the north on the Norwegian island of Svalbard, three very sensitive scientific cameras gaze at a narrow patch of sky. Each camera is tuned to look for a specific wavelength of auroral light, snapping pictures at 20 or 32 frames per second. While the cameras don’t register the green or red light that aurora chasers usually photograph, the aurora dances dynamically across ASK’s images. Scientists are trying to understand more about what causes these small-scale shapes, what conditions are necessary for them to occur, and how energy is transferred from space into the Earth’s atmosphere. ASK not only sees night-time aurora, but also special “cusp aurora” that occur during the day but are only visible in extremely specific conditions (more or less from Svalbard in the winter.)

Still from Dr. Whiter’s presentation. The tiny blue square on the allsky image (a fisheye photo looking straight up) represents the field of view of the ASK cameras. The cameras point almost directly overhead. 

The setup, called Auroral Structure and Kinetics, or ASK, sometimes incorporates telescopes, similar to attaching binoculars to a camera. Project lead Dr. Daniel Whiter says, “The magnification of the telescopes is only 2x; the camera lenses themselves already provide a small field of view, equivalent to about a 280mm lens on a 35mm full frame camera. But the telescopes have a large aperture to capture lots of light, even with a small field of view.”

The challenge is that ASK has been watching the aurora for fifteen years and has amassed 180 terabytes of data. The team is too small to look through it all for the most interesting events, so they decided to ask for help from the general public. 

Visiting the Aurora Zoo

Using the Zooniverse platform, the Aurora Zoo team set up a project with which anyone can look at short clips of auroras to help highlight patterns to investigate further. The pictures are processed so that they are easier to look at. They start out black and white, but are given “false color” to help make them colorblind-friendly and easier for citizen scientists to work with. They are also sequenced into short video clips to highlight movement. To separate out pictures of clouds, the data is skimmed by the scientists each day and run through an algorithm.

Aurora Zoo participants are then asked to classify the shape, movement, and “fuzziness,” or diffuse quality, of the aurora. STEVE fans will be delighted by the humor in some of the options! For example, two of the more complex types are affectionately called “chocolate sauce” and “psychedelic kaleidoscope.” So far, Aurora Zoo citizen scientists have analyzed 7 months’ worth of data out of the approximately 80 months ASK has been actively observing aurora. Check out Dr. Whiter’s full presentation for a walkthrough on how to classify auroras, and try it out on their website!

Some of the categories into which Zooniverse volunteers classify auroral movement. Credit: Dr. Daniel Whiter.

What can be learned from Aurora Zoo is different from other citizen science projects like Aurorasaurus. For example, when several arc shapes are close to one another, they can look like a single arc to the naked eye or in a photo, but the tiny patch of sky viewed through ASK can reveal them to be separate features. These tiny details are also relevant to the study of STEVE and tiny green features in its “picket fence”.

Early (Surprising!) Results

Aurora Zoo participants blew through the most recent batch of data, and fresh data is newly available. The statistics they gathered show that different shapes and movements occur at different times of day. For example, psychedelic kaleidoscopes and chocolate sauce are more common in the evening hours. The fact that the most dynamic forms show up at night rather than in the daytime cusp aurora reveals that these forms must be connected to very active aurora on the night side of the Earth. 

Aurora Zoo participants also notice other structures. Several noted tiny structures later termed “fragmented aurora-like emissions,” or FAEs. Because of the special equipment ASK uses, the team was able to figure out that the FAEs they saw weren’t caused by usual auroral processes, but by something else. They published a paper about it, co-authored with the citizen scientists who noticed the FAEs. 

Still from Dr. Whiter’s presentation, featuring FAEs and Aurora Zoo’s first publication.

What’s next? Now that Aurora Zoo has a lot of classifications, they plan to use citizen scientists’ classifications to train a machine learning program to classify more images. They also look forward to statistical studies, and to creating new activities within Aurora Zoo like tracing certain shapes of aurora. 

STEVE fans, AuroraZoo hasn’t had a sighting yet. This makes sense, because ASK is at a higher latitude than that at which STEVE is usually seen. However, using a similar small-field technique to examine the details of STEVE has not yet been done. It might be interesting to try and could potentially yield some important insights into what causes FAEs.

Citizen Science Month, held during April of each year, encourages people to try out different projects. If you love the beautiful Northern and Southern Lights, you can help advance real aurora science by taking part in projects like Aurora Zoo and Aurorasaurus

About the authors of this blog post: Dr. Liz MacDonald and Laura Brandt lead a citizen science project called Aurorasaurus. While not a Zooniverse project, Aurorasaurus tracks auroras around the world via real-time reports by citizen scientist aurora chasers on its website and on Twitter. Aurorasaurus also conducts outreach and education across the globe, often through partnerships with local groups of enthusiasts.  Aurorasaurus is a research project that is a public-private partnership with the New Mexico Consortium supported by the National Science Foundation and NASA. Learn more about NASA citizen science here

Grant’s Great Leaving Challenge

If you subscribe to our newsletters, the name “Grant” probably sounds familiar to you. Grant (our Project Manager and basically the ‘backbone of the Zooniverse’) has been with us for nearly 9 years, and with a heavy heart we’re sad to report he’s finally moving on to his next great adventure.

To mark his departure, we’ve announced “Grant’s Great Leaving Challenge”. The goal of this challenge is to collect 100,000 new classifications for the four Featured Projects on the homepage. Starting yesterday, if you submit at least 10 classifications total for these projects your name will automatically be entered to win one of three prizes. Importantly, you must be logged-in while classifying to be eligible for the draw. The challenge will end on Sunday, March 27th at midnight (GMT), and the winners will be announced on Tuesday, March 29th.

While we aren’t divulging what the prizes are, it might tempt you to hear that they’ll be personalised by Grant himself…

Read on to learn about the four featured projects, and what you can do to help them out.

Penguin Watch
Penguins – globally loved, but under threat. Research shows that in some regions, penguin populations are in decline; but why? Begin monitoring penguins to help us answer this question. With over 100 sites to explore, we need your help now more than ever!

Planet Hunters NGTS
The Next-Generation Transit Survey have been searching for transiting exoplanets around the brightest stars in the sky. We need your help sifting through the observations flagged by the computers to search for hidden worlds that might have been missed in the NGTS team’s review. Most of the planets in the dataset have likely been found already, but you just might be the first to find a new exoplanet not known before!

Dingo? Bingo!
The Myall Lakes Dingo Project aims to develop and test non-lethal tools for dingo management, and to further our understanding and appreciation of this iconic Australian carnivore. We have 64 camera-traps across our study site, and need your help to identify the animals they detect – including dingoes.

Weather Rescue at Sea
The aim of the Weather Rescue At Sea project is to construct and extended the global surface temperature record back to the 1780s, based on the air temperature observations recorded across the planet. This will be achieved by crowd-sourcing the recovery (or data rescue) of the weather observations from historical ship logbooks, station records, weather journals and other sources, to produce a longer, and more consistent dataset of global surface temperature.

Let’s send Grant off with a bang. Happy classifying!

Zooniverse Volunteers Discover More New Worlds

The volunteers on our Planet Hunters TESS project have helped discover another planetary system! The new system, HD 152843, consists of two planets that are similar in size to Neptune and Saturn in our own solar system, orbiting around a bright star that is similar to our own Sun. This exciting discovery follows on from our validation of the long-period planet around an evolved (old) star, TOI-813, and from our recent paper outlining the discovery of 90 Planet Hunters TESS planet candidates, which gives us encouragement that there are a lot more exciting systems to be found with your help!

Figure: The data obtained by NASA’s Transiting Exoplanet Survey Satellite which shows two transiting planets. The plot shows the brightness of the star HD 152843 over a period of about a month. The dips appear where the planets passed in front of the star and blocked some of its light from getting to Earth.


Multi-planet systems, like this one, are particularly interesting as they allow us to study how planets form and evolve. This is because the two planets that we have in this system must have necessarily formed out of the same material at the same time, but evolved in different ways resulting in the different planet properties that we now observe.


Even though there are already hundreds of confirmed multi-planet systems, the number of multi-planet systems with stars that are bright enough such that we can study them using ground-based telescopes remains very small. However, the brightness of this new citizen science found system, HD 152843, makes it an ideal target for follow-up observations, allowing us to measure the planet masses and possibly even probe their atmospheric composition.


This discovery was made possibly with the help of tens of thousands of citizen scientists who helped to visually inspect data obtained by NASA’s Transiting Exoplanet Survey Satellite, in the search for distant worlds. We thank all of the citizen scientists taking part in the project who continue to help with the discovery of exciting new planet systems and in particular to Safaa Alhassan, Elisabeth M. L. Baeten, Stewart J. Bean, David M. Bundy, Vitaly Efremov, Richard Ferstenou, Brian L. Goodwin, Michelle Hof, Tony Hoffman, Alexander Hubert, Lily Lau, Sam Lee, David Maetschke, Klaus Peltsch, Cesar Rubio-Alfaro, Gary M. Wilson, the citizen scientists who directly helped with this discovery and who have become co-authors of the discovery paper.


The paper has been published by the Monthly Notices of the Royal Astronomical Society (MNRAS) journal and you can find a version of it on arXiv at: https://arxiv.org/pdf/2106.04603.pdf.

Into the Zooniverse: Vol II now available!

For the second year in a row, we’re honoring the hundreds of thousands of contributors, research teams, educators, Talk moderators, and more who make Zooniverse possible. This second edition of Into the Zooniverse highlights another 40 of the many projects that were active on the website and app in the 2019 – 20 academic year.

Image of Into the Zooniverse book

In that year, the Zooniverse has launched 65 projects, volunteers have submitted more than 85 million classifications, research teams have published 35 papers, and hundreds of thousands of people from around the world have taken part in real research. Wow!

To get your copy of Into the Zooniverse: Vol II, download a free pdf here or order a hard copy on Blurb.com. Note that the cost of the book covers production and shipping; Zooniverse does not receive profit through sales. According to the printer, printing and binding take 4-5 business days, then your order ships. To ensure that you receive your book before December holidays, you can use this tool to calculate shipping times.

Read more at zooniverse.org/about/highlights.

SuperWASP Variable Stars – Update

The following is an update from the SuperWASP Vairable Stars research team. Enjoy!

Welcome to the Spring 2020 update! In this blog, we will be sharing some updates and discoveries from the SuperWASP Variable Stars project.

What are we aiming to do?

We are trying to discover the weirdest variable stars!

Stars are the building blocks of the Universe, and finding out more about them is a cornerstone of astrophysics. Variable stars (stars which change in brightness) are incredibly important to learning more about the Universe, because their periodic changes allow us to probe the underlying physics of the stars themselves.

We have asked citizen scientists to classify variable stars based on their photometric light curves (the amount of light over time), which helps us to determine what type of variable star we’re observing. Classifying these stars serves two purposes: firstly to create large catalogues of stars of a similar type which allows us to determine characteristics of the population; and secondly, to identify rare objects displaying unusual behaviour, which can offer unique insights into stellar structure and evolution.

We have 1.6 million variable stars detected by the SuperWASP telescope to classify, and we need your help! By getting involved, we can build up a better idea of what types of stars are in the night sky.

What have we discovered so far?

We’ve done some initial analysis on the first 300,000 classifications to get a breakdown of how many of each type of star is in our dataset.

So far it looks like there’s a lot of junk light curves in the dataset, which we expected. The programme written to detect periods in variable stars often picks up exactly a day or a lunar month, which it mistakes for a real period. Importantly though, you’ve classified a huge number of real and exciting light curves!

We’re especially excited to do some digging into what the “unknown” light curves are… are there new discoveries hidden in there? Once we’ve completed the next batch of classifications, we’ll do some more to see whether the breakdown of types of stars changes.

An exciting discovery…

In late 2018, while building this Zooniverse project, we came across an unusual star. This Northern hemisphere object, TYC-3251-903-1, is a relatively bright object (V=11.3) which has previously not been identified as a binary system. Although the light curve is characteristic of an eclipsing contact binary star, the period is ~42 days, notably longer than the characteristic contact binary period of less than 1 day.

Spurred on by this discovery, we identified a further 16 candidate near-contact red giant eclipsing binaries through searches of archival data. We were excited to find that citizen scientists had also discovered 10 more candidates through this project!

Figure 1: Artist’s impression of a contact binary star [Mark A. Garlick] Over the past 18 months, we’ve carried out an observing campaign of these 27 candidate binaries using telescopes from across the world. We have taken multi-colour photometry using The Open University’s own PIRATE telescope, and the Las Cumbres Observatory robotic telescopes, and spectroscopy of Northern candidates with the Liverpool Telescope, and Southern candidates using SALT. We’ve also spent two weeks in South Africa on the 74-inch telescope to take further spectroscopy.

Of the 10 candidate binaries discovered by citizen scientists, we were happy to be able to take spectroscopic observations for 8 whilst in South Africa, and we have confirmed that at least 2 are, in fact, binaries! Thank you citizen scientists!

Why is this discovery important?

Figure 2: V838 Mon and its light echo [ESA/NASA]

The majority of contact or near-contact binaries consist of small (K/M dwarf) stars in close orbits with periods of less than 1 day. But for stars in a binary in a contact binary to have such long periods requires both the stars to be giant. This is a previously unknown configuration…

Interestingly, a newly identified type of stellar explosion, known as a red nova, is thought to be caused by the merger of a giant binary system, just like the ones we’ve discovered.

Red novae are characterised by a red colour, a slow expansion rate, and a lower luminosity than supernovae. Very little is known about red novae, and only one has been observed pre-nova, V1309 Sco, and that was only discovered through archival data. A famous example of a possible red nova is the 2002 outburst in V838 Mon. Astronomers believe that this was likely to have been a red nova caused by a binary star merger, forming the largest known star for a short period of time after the explosion.

So, by studying these near-contact red giant eclipsing binaries, we have an unrivalled opportunity to identify and understand binary star mergers before the merger event itself, and advance our understanding of red novae.

What changes have we made?

Since the SuperWASP Variable Stars Zooniverse project started, we’ve made a few changes to make the project more enjoyable. We’ve reduced the number of classifications needed to retire a target, and we’ve also reduced the number of classifications of “junk” light curves needed to retire it. This means you should see more interesting, real, light curves.

We’ve also started a Twitter account, where we’ll be sharing updates about the project, the weird and wacky light curves you find, and getting involved in citizen science and astronomy communities. You can follow us here: www.twitter.com/SuperWASP_stars

What’s next?

We still have thousands of stars to classify, so we need your help!

Once we have more classifications, we will be beginning to turn the results into a publicly available, searchable website, a bit like the ASAS-SN Catalogue of Variable Stars (https://asas-sn.osu.edu/variables). Work on this is likely to begin towards the end of 2020, but we’ll keep you updated.

We’re also working on a paper on the near-contact red giant binary stars, which will include some of the discoveries by citizen scientists. Expect that towards the end of 2020, too.

Otherwise, watch this space for more discoveries and updates!

We would like to thank the thousands of citizen scientists who have put time into this Zooniverse project. If you ever have any questions or suggestions, please get in touch.

Heidi & the SuperWASP Variable Stars team.

We Are Still here

These are strange times we live in. With many people ill or worried, and communities all over the world in lockdown or cutting out social contact in order to try and control the spread of the novel coronavirus, it’s hard to work out what the future holds.

The Zooniverse team – including our teams in Oxford and in Chicago – are all working from home, and we’re struggling to master how to communicate and work in this odd situation. So far we’ve encountered all sorts of weird glitches while trying to keep in touch.

Zoom backgrounds can be weird and terrifying, as demonstrated here by Sam.
Why am I the only one with a profile picture?

But we are still here! As we know lots of you are turning to Zooniverse for a distraction while your lives are disrupted, we’ve asked our research teams to pay particular attention to their projects and to be even more present online during this time. We’ll try and bring you more news from them over the next few weeks.

Anyway, if any of you would like to distract yourselves by taking part and contributing to one of our projects, we’ve made it easier to find a new project to dive into. The top of our projects page now highlights selected projects – they will change frequently, and might be topical, timely, particularly in need of your help – or just our favourites!

Zooniverse projects succeed because they’re the collective work of many thousands of you who come together to collaborate with our research teams – and a little bit of collective action in the world right now feels pretty good.

Look after yourselves, and see you in the Zooniverse.

Chris

Zooniverse is 10 today!

Zooniverse is ten years old! On 12th December 2009, Zooniverse.org sputtered into life, celebrated with a post on this very blog (https://blog.zooniverse.org/2009/12/12/the-zooniverse-is-go/). Truth be told, there wasn’t a huge amount to show – the only project there was our first, Galaxy Zoo, which had been running for a couple of years by that point. What a contrast to today’s bustling home page, with 229 live projects for you to choose from. Early in 2010 two new projects – Solar Stormwatch and Moon Zoo – were launched, before Old Weather became our first project based here on Earth instead of out in the cosmos.

To celebrate, we’re redoubling our efforts to reach two million volunteers. We’re about 50,000 short, so if every one in twenty of you invites a friend to join in we’ll be there in no time. We have a prize lined up for the lucky two millionth, and anyone who classifies on any project on that auspicious day will go into a draw for some Zooniverse swag.

Birthdays are also time for reflection. To be honest, I was a bit surprised when I realised that we were approaching this milestone birthday. Galaxy Zoo had arrived with a big bang, a sudden explosion of effort, but as the above description suggests Zooniverse grew more slowly, as project after project was added to our nascent platform. Over the years, we rebuilt the codebase (more than once), projects came and went, and the army of Zooniverse volunteers grew in strength and in numbers. Looking back, though, the decision we made to launch Zooniverse set in stone some important principles that still guide us today.

For starters, it meant that we were committed to building a universe of projects which volunteers could move easily between. Projects which were lucky enough to get publicity – featuring on BBC Stargazing Live, for example – thus benefited other projects by bringing new people into the Zooniverse community. We built a shared codebase, so that funding for a particular project could support the development of code that benefited everyone. For most participants, their experience of the Zooniverse is limited to the project they’re participating in, whether it involves penguins, papyri or planets, but these network effects have been hugely important in sustaining such a rich variety of projects for a decade.

We’ve always tried to make it as easy as possible for researchers to build the best projects they can imagine, investing in the project builder tool that now supports all of the projects listed on our homepage. The choice – made early – to present the Zooniverse as a tool that’s free for researchers to use has caused problems; we are almost completely dependent on grant funding, which is a risky way to run a railroad, to say the least. But it has meant that those researchers, often early in their careers, have been able to turn to Zooniverse for help without reservation, and I think we’ve had better results – and more fun – as a consequence. 

There have been so many great moments over the last ten years, but just for a bit of fun here are my top 3 favourites:

  1. First hearing the Solar Stormwatch results were good – realising the method doesn’t just work for Galaxy Zoo.
  2. Climbing up a hill in the Antarctic to retrieve Penguin Watch data.
  3. The morning where we thought Higgs Hunters volunteers had discovered something truly remarkable (sadly it turned out they hadn’t).

So here’s to ten years of the Zooniverse. At any point in the last decade, I’d have been wrong if I’d tried to predict what the next few years would bring. I’m looking forward to more adventures and surprises in our second decade!

Chris

PS I can’t possibly list all of the people who were instrumental in building and guiding the project over the years, but I hope the team will forgive me for mentioning Arfon Smith, my co-founder and the technical genius behind the Zooniverse’s first few years, Lucy Fortson, whose wisdom we’ve relied on from the start, and Lauras Whyte and Trouille who have in turn led the Adler team in Chicago through this mad decade. Special thanks too to the volunteers – all of you – but especially Elisabeth Baeten, Jules Wilkinson, and PMason, whose spirit and generosity is a constant source of wonder and inspiration. 

ESA Image of the Week created by Zooniverse volunteer


Main-belt asteroid 2001 SE101 passing in front of the Crab Nebula (M1). The streak appears curved due to Hubble’s orbital motion around the Earth. Credit: ESA/Hubble & NASA, M. Thévenot (@AstroMelina); CC BY 4.0

Last week, the European Space Agency released the above Image of the Week from the Hubble Asteroid Hunter project. It shows an asteroid passing in front of the Crab Nebula, M1, an image found in the ESA HST archives by citizen scientist Melina Thevenot, who created a colour image of it. 

Hubble Asteroid Hunter was created using our Zooniverse Panoptes platform by a team of researchers from the European Space Agency, and launched on International Asteroid Day (30 June 2019) with the aim of identifying serendipitous observations of asteroids in archival Hubble data. Over the almost three decades of observations, HST provided a vast wealth of images that are available in the archives. Many of these images targeting far away galaxies or clusters contain photobombing asteroids, passing in front of the intended targets (for example asteroids passing in front of Abell 370 cluster in the Hubble Frontier Fields – https://hubblesite.org/contents/media/images/2017/33/4082-Image.html?keyword=Asteroids) . Rather than being a nuisance, astronomers realised that the images can be used to better characterise the asteroids themselves and determine their orbits. 

A pipeline was set up in ESA’s discovery portal (ESA Sky – https://sky.esa.int/) that matches the asteroids’ predicted positions in both time and space from the IAU Minor Planet Center database with the European HST archival images. The predicted positions of these objects, nevertheless, have some uncertainties as the ephemerides are not always known to great precision. This is a great opportunity for citizen scientists to inspect Hubble images and mark the positions of the trails. Knowing the exact positions of the trails allows researchers to update the ephemerides of the asteroids, and better characterise their orbits. This is important, especially for Near-Earth Objects, which can be potentially hazardous for the Earth. 

So far, over 1900 citizen scientists participated in the project, providing over 300,000 classifications. The project was extended with images from the ecliptic plane to search for potentially unknown asteroids, and with other longer exposure archival images to search for possible past interstellar visitors, such as 2I/Borisov. The volunteers have the chance of exploring beautiful Hubble images of galaxies, clusters and  gravitational lenses with these new images! 

Happy asteroid hunting on www.asteroidhunter.org

UKRI Citizen Science Exploration Grants

UK Research and Innovation have announced a scheme to support citizen science projects, focused especially on new and innovative uses. It seems like an excellent opportunity to experiment, or to work on designing a new project and we hope it persuades many more people to take the plunge and start using citizen science approaches in their research. More details at https://www.ukri.org/funding/funding-opportunities/citizen-science-exploration.

We at Zooniverse would be keen to help any UK-based researchers thinking of applying for such a grant – if you’re interested, or would like to discuss how you might use the Zooniverse platform, contact Grant Miller : grant@zooniverse.org