All posts by The Zooniverse

Online citizen science projects. The Zooniverse is doing real science online,.

Researchers working to improve participant learning through Zooniverse

Our research group at Syracuse University spends a lot of time trying to understand how participants master tasks given the constraints they face. We conducted two studies as a part of a U.S. National Science Foundation grant to build Gravity Spy, one of the most advanced citizen science projects to date (see: www.gravityspy.org). We started with two questions: 1) How best to guide participants through learning many classes? 2) What type of interactions do participants have that lead to enhanced learning?  Our goal was to improve experiences on the project. Like most internet sites, Zooniverse periodically tries different versions of the site or task and monitors how participants do.

We conducted two Gravity Spy experiments (the results were published via open access: article 1 and article 2). Like in other Zooniverse projects, Gravity Spy participants supply judgments to an image subject, noting which class the subject belongs to. Participants also have access to learning resources such as the field guide, about pages, and ‘Talk’ discussion forums. In Gravity Spy, we ask participants to review spectrograms to determine whether a glitch (i.e., noise) is present. The participant classifications are supplied to astrophysicists who are searching for gravitational waves. The classifications help isolate glitches from valid gravitational-wave signals.

Gravity Spy combines human and machine learning components to help astrophysicists search for gravitational waves. Gravity Spy uses machine learning algorithms to determine the likelihood of a glitch belonging to a particular glitch class (currently, 22 known glitches appear in the data stream); the output is a percentage likelihood of being in each category.

Figure 1. The classification interface for a high level in Gravity Spy

Gradual introduction to tasks increases accuracy and retention. 

The literature on human learning is unclear about how many classes people can learn at once. Showing too many glitch class options might discourage participants since the task may seem too daunting, so we wanted to develop training while also allowing them to make useful contributions. We decided to implement and test leveling, where participants can gradually learn to identify glitch classes across different workflows. In Level 1, participants see only two glitch class options; in Level 2, they see 6; in Level 3, they see 10, and in Level 4, 22 glitch class options. We also used the machine learning results to route more straightforward glitches to lower levels and the more ambiguous subjects to higher workflows. So participants in Level 1 only saw subjects that the algorithm was confident a participant could categorize accurately. However, when the percentage likelihood was low (meaning the classification task became more difficult), we routed these to higher workflows.

We experimented to determine what this gradual introduction into the classification task meant for participants. One group of participants were funneled through the training described above (we called it machine learning guided training or MLGT);  another group of participants was given all 22 classes at once.  Here’s what we found:  

  • Participants who completed MLGT were more accurate than participants who did not receive the MLGT (90% vs. 54%).  
  • Participants who completed MLGT executed more classifications than participants who did not receive the MLGT (228 vs. 121 classifications).
  • Participants who completed MLGT had more sessions than participants who did not receive the MLGT (2.5 vs. 2 sessions). 

The usefulness of resources changes as tasks become more challenging

Anecdotally, we know that participants contribute valuable information on the discussion boards, which is beneficial for learning. We were curious about how participants navigated all the information resources on the site and whether those information resources improved people’s classification accuracy. Our goal was to (1) identify learning engagements, and (2) determine if those learning engagements led to increased accuracy. We turned on analytics data and mined these data to determine which types of interactions (e.g., posting comments, opening the field guide, creating collections) improved accuracy. We conducted a quasi-experiment at each workflow, isolating the gold standard data (i.e., the subjects with a known glitch class). We looked at each occasion a participant classified a gold standard subject incorrectly and determined what types of actions a participant made between that classification and the next classification of the same glitch class. We mined the analytics data to see what activities existed between Classification A and Classification B. We did some statistical analysis, and the results were astounding and cool. Here’s what we found:  

  • In Level 1, no learning actions were significant. We suspect this is because the tutorial and other materials created by the science team are comprehensive, and most people are accurate in workflow 1 (~97%).
  • In Level 2 and Level 3, collections, favoriting subjects, and the search function was most valuable for improving accuracy. Here, participants’ agency seems to help to learn. Anecdotally, we know people collect and learn from ambiguous subjects.
  • In Level 4, we found that actions such as posting comments and, viewing the collections created by other participants were most valuable for improving accuracy. Since the most challenging glitches are administered in workflow 4, participants seek feedback from others.

The one-line summary of this experiment is that when tasks are more straightforward, learning resources created by the science teams are most valuable; however, as tasks become more challenging, learning is better supported by the community of participants through the discussion boards and collections. Our next challenge is making these types of learning engagements visible to participants.

Note: We would like to thank the thousands of Gravity Spy participants without whom this research would not be possible. This work was supported by a U.S. National Science Foundation grant No. 1713424 and 1547880. Check out Citizen Science Research at Syracuse for more about our work.

Fixed Cross-Site Scripting Vulnerability on Zoomapper App

On 9 November 2020, a security researcher notified us of a cross-site scripting (XSS) vulnerability on our zoomapper application. This service hosts tile sets that are used to render maps for a small number of other Zooniverse applications, but is not connected to any critical Zooniverse infrastructure. This XSS vulnerability could have allowed users to execute malicious code on the zoomapper application in the browser.

We were able to remediate the vulnerability within hours of the report by disabling the browser GUI for zoomapper (see PR #6). The GUI had been turned on by default for the zoomapper app, but is not necessary to fulfill the app’s intended role.

Additional notes on the incident:

  • The vulnerability existed since the app was first deployed on September 15th 2020.
  • The vulnerability was located in the underlying Tileserver-GL dependency.
  • No Zooniverse user or project data was vulnerable or exposed by this vulnerability.

We’d like to thank Rachit Verma (@b43kd00r) for bringing this issue to our attention and for following responsible disclosure by reporting it to us in private, as requested on our security page.

Zooniverse Mobile App Release v2.8.2!

Now it’s even easier to contribute to science from your phone!

On any crowded public bus (before the pandemic), people sat next to each other, eyes fixed on their phones, smiling, swiping. 

What were they all doing? Using a dating app, maybe. Or maybe they were separating wildcam footage of empty desert from beautiful birds. Maybe they were spotting spiral arms on faraway galaxies.

Maybe one of them was you!  

We’ve loved seeing the participation in the Zooniverse through the mobile app (available for iOS and Android) over the past two years. So we made it even easier for you to do that wherever you swipe these days—a park bench, or maybe your home. (Please don’t swipe and drive). 

Right now, you can go into the app and contribute to Galaxy Zoo Mobile, Catalina Outer Solar System Survey, Disk Detective, Mapping Historic Skies, Nest Quest Go, or Planet Four: Ridges. And we have more projects on the way!

What’s new in the app

When you update to version 2.8.2, you’ll notice a slick new look. At the very top, there’s now an “All Projects” category. This will show you everything available for mobile—with the projects that need your help the most sorted at the very top! You can also still choose a specific discipline, of course.

That’s it for features that are totally new, but a lot of features in this version are fixed. No more crashing when you tap on browser projects. A lot fewer project-related crashes. Animated gifs, which previously worked only on iOS, now also work on Android—so researchers can show you an image that changes over time.  

What’s more—and you’ll never see this, but it’s important to us, the developers—we’ve made a lot of changes that help us keep improving the app. We have better crash reporting mechanisms and more complete automated testing. We also updated all of our documentation so that developers from outside our team can contribute to the app, too! We’d love to be a go-to open source project for people who are learning, or working in, React Native (the platform on which our app is built).

Aggregate Functionality

The full list of functionalities now includes:

  • Swipe (binary question [A or B.] response)
  • Single-answer question (A, B, or C)
  • Multi-answer question (any combination of A, B, and C.)
  • Rectangle drawing task (drawing a rectangle around a feature within a subject)
  • Single-image subjects
  • Multi-image subjects (e.g. uploading 2+ images as a single subject; users swipe up/down to display the different images)
  • Animated gifs as subjects
  • Subject auto-linking (automatically linking subjects retired from one workflow into another workflow of interest on the same project)
  • Push notifications (sending messages/alerts about new data, new workflows, etc., via the app)
  • Preview (an owner or collaborator on a project in development being able to preview a workflow in the ‘Preview’ section of the mobile app)
  • Beta Review (mobile enabled workflows are accessible through the ‘Beta Review’ section of the app for a project in the Beta Review process; includes an in-app feedback form)
  • Ability to see a list of all available projects, as well as filter by discipline (with active mobile app workflows listed at the top)

We also carried out a number of infrastructure improvements, including: 

  • Upgrades to the React Native libraries we use
  • Created a staging environment to test changes before they are implemented in full production
  • Additional test coverage
  • Implemented bug reporting and tracking
  • Complete documentation, so open source contributors can get the app running from our public code repository
  • And a myriad of additional improvements like missing icons no longer crashing the app, improvements to the rectangle drawing task, etc.

Note: we will continue developing the app; this is just the end of this phase of effort and a great time to share the results.

If you’re leading a Zooniverse project and have any questions about where in the Project Editor ‘workflow’ interface to ‘enable on mobile’, don’t hesitate to email contact@zooniverse.org. And/or if you’re a volunteer and wonder if workflow(s) on a given project could be enabled on mobile, please post in that project’s Talk to start the conversation with the research team and us. The more, the merrier!

Looking forward to having more projects on the mobile app!

A Few Stats of Interest:

  • Since Jan 1, 2020: 
    • 6.2 million classifications submitted via the app (that’s 7% of 86.7 million classifications total through Zooniverse projects)
    • 18,000 installations on iOS + 17,000 on Android
  • Current Active Users (people who have used the app in the last 30 days):
    • 1,800 on iOS + 7,700 on Android

Previous Blog Posts about the Zooniverse Mobile App:

NASA and Zooniverse Announce Partnership

We’re very happy to announce a new partnership between NASA and our Zooniverse teams at the Adler Planetarium and the University of Minnesota. This new partnership advances and deepens our existing relationship and efforts with NASA. Our team will work together with NASA to create new opportunities for the Zooniverse volunteer community to engage and participate in projects that span the wide range of NASA’s science divisions: astrophysics, heliophysics, planetary science, and earth science.

This new NASA grant will enable new projects as well as provide support for our developers to maintain our research-enabling platform. This support is very welcome, and will help us share our platform with a growing number of scientists who want to unlock data from NASA’s missions, centers, and projects. We’re really looking forward to building and launching these new projects, but don’t worry — nothing else will change. The platform will still be a welcome home to a wide range of research and projects.

It’s been more than a decade now since the Zooniverse launched, and it’s exciting to have reached the point where the Zooniverse platform, research teams, and AMAZING community of volunteers are consistently recognized as valuable contributors and collaborators in research.  The Zooniverse team is excited for this partnership and for the future ahead — here’s to lots more adventures to come!

Caesar Subject Rule Effect Vulnerability Report

In the beginning of April 2020, we were notified that subjects from one Zooniverse project were appearing in the subject set of a separate project where they did not belong. In our investigation of the issue, our team determined that this behavior was being caused by a Caesar configuration mistake that used an incorrect Subject Set ID. Project owners using Caesar were able to create Subject Rule Effects that added subjects to collections or subject sets, even without proper subject set editing permissions. We have rectified the issue surrounding Subject Rule Effects and eliminated this vulnerability, and would like to share the details for anyone who is interested.

The issue was raised by project lead James Perry (@JamesPerry), who reported that subjects that didn’t belong to his project were appearing in his subject sets.  Due to a mistyped subject set ID in a Caesar `add_to_subject_set` effect for an unrelated project, that Subject Rule Effect was sending subjects from that project to one of James’s subject sets instead of the correct target.

Our immediate course of action was to fix the project impacted by the vulnerability, and push out a temporary code fix to prevent the vulnerability from being exploited. 

  1. To fix the affected project, we updated the incorrect subject set id for the project that was incorrectly sending subjects to the wrong project and removed the unwanted subjects from the set. 
  2. On April 3rd we deployed a temporary code fix to disable Subject Rule Effect creation and modification for all but admin users (see PR #1109). This change was communicated to affected teams that were most impacted by the change, and teams that reached out after seeing our notification banner or encountering a Caesar interface error.

On May 15th we pushed out a permanent fix that checked the user has permissions to send data to the target subject set or collection. Specifically, the updated validation code checks that the user has update permissions on the project the subject set or collection is linked to. (see PRs #1115, #1129 and #1131). 

For anyone running their own hosted copy of Caesar, we recommend pulling these changes as soon as you’re able.

SuperWASP Variable Stars – Update

The following is an update from the SuperWASP Vairable Stars research team. Enjoy!

Welcome to the Spring 2020 update! In this blog, we will be sharing some updates and discoveries from the SuperWASP Variable Stars project.

What are we aiming to do?

We are trying to discover the weirdest variable stars!

Stars are the building blocks of the Universe, and finding out more about them is a cornerstone of astrophysics. Variable stars (stars which change in brightness) are incredibly important to learning more about the Universe, because their periodic changes allow us to probe the underlying physics of the stars themselves.

We have asked citizen scientists to classify variable stars based on their photometric light curves (the amount of light over time), which helps us to determine what type of variable star we’re observing. Classifying these stars serves two purposes: firstly to create large catalogues of stars of a similar type which allows us to determine characteristics of the population; and secondly, to identify rare objects displaying unusual behaviour, which can offer unique insights into stellar structure and evolution.

We have 1.6 million variable stars detected by the SuperWASP telescope to classify, and we need your help! By getting involved, we can build up a better idea of what types of stars are in the night sky.

What have we discovered so far?

We’ve done some initial analysis on the first 300,000 classifications to get a breakdown of how many of each type of star is in our dataset.

So far it looks like there’s a lot of junk light curves in the dataset, which we expected. The programme written to detect periods in variable stars often picks up exactly a day or a lunar month, which it mistakes for a real period. Importantly though, you’ve classified a huge number of real and exciting light curves!

We’re especially excited to do some digging into what the “unknown” light curves are… are there new discoveries hidden in there? Once we’ve completed the next batch of classifications, we’ll do some more to see whether the breakdown of types of stars changes.

An exciting discovery…

In late 2018, while building this Zooniverse project, we came across an unusual star. This Northern hemisphere object, TYC-3251-903-1, is a relatively bright object (V=11.3) which has previously not been identified as a binary system. Although the light curve is characteristic of an eclipsing contact binary star, the period is ~42 days, notably longer than the characteristic contact binary period of less than 1 day.

Spurred on by this discovery, we identified a further 16 candidate near-contact red giant eclipsing binaries through searches of archival data. We were excited to find that citizen scientists had also discovered 10 more candidates through this project!

Figure 1: Artist’s impression of a contact binary star [Mark A. Garlick] Over the past 18 months, we’ve carried out an observing campaign of these 27 candidate binaries using telescopes from across the world. We have taken multi-colour photometry using The Open University’s own PIRATE telescope, and the Las Cumbres Observatory robotic telescopes, and spectroscopy of Northern candidates with the Liverpool Telescope, and Southern candidates using SALT. We’ve also spent two weeks in South Africa on the 74-inch telescope to take further spectroscopy.

Of the 10 candidate binaries discovered by citizen scientists, we were happy to be able to take spectroscopic observations for 8 whilst in South Africa, and we have confirmed that at least 2 are, in fact, binaries! Thank you citizen scientists!

Why is this discovery important?

Figure 2: V838 Mon and its light echo [ESA/NASA]

The majority of contact or near-contact binaries consist of small (K/M dwarf) stars in close orbits with periods of less than 1 day. But for stars in a binary in a contact binary to have such long periods requires both the stars to be giant. This is a previously unknown configuration…

Interestingly, a newly identified type of stellar explosion, known as a red nova, is thought to be caused by the merger of a giant binary system, just like the ones we’ve discovered.

Red novae are characterised by a red colour, a slow expansion rate, and a lower luminosity than supernovae. Very little is known about red novae, and only one has been observed pre-nova, V1309 Sco, and that was only discovered through archival data. A famous example of a possible red nova is the 2002 outburst in V838 Mon. Astronomers believe that this was likely to have been a red nova caused by a binary star merger, forming the largest known star for a short period of time after the explosion.

So, by studying these near-contact red giant eclipsing binaries, we have an unrivalled opportunity to identify and understand binary star mergers before the merger event itself, and advance our understanding of red novae.

What changes have we made?

Since the SuperWASP Variable Stars Zooniverse project started, we’ve made a few changes to make the project more enjoyable. We’ve reduced the number of classifications needed to retire a target, and we’ve also reduced the number of classifications of “junk” light curves needed to retire it. This means you should see more interesting, real, light curves.

We’ve also started a Twitter account, where we’ll be sharing updates about the project, the weird and wacky light curves you find, and getting involved in citizen science and astronomy communities. You can follow us here: www.twitter.com/SuperWASP_stars

What’s next?

We still have thousands of stars to classify, so we need your help!

Once we have more classifications, we will be beginning to turn the results into a publicly available, searchable website, a bit like the ASAS-SN Catalogue of Variable Stars (https://asas-sn.osu.edu/variables). Work on this is likely to begin towards the end of 2020, but we’ll keep you updated.

We’re also working on a paper on the near-contact red giant binary stars, which will include some of the discoveries by citizen scientists. Expect that towards the end of 2020, too.

Otherwise, watch this space for more discoveries and updates!

We would like to thank the thousands of citizen scientists who have put time into this Zooniverse project. If you ever have any questions or suggestions, please get in touch.

Heidi & the SuperWASP Variable Stars team.

Fulfilling Service Hour Requirements through Zooniverse

Over the past week a number of students and organizations have reached out to us to see if Zooniverse participation can fulfill volunteering/service hour requirements for graduation, scholarships, etc.

The short answer is — Yes! Many organizations welcome and encourage Zooniverse participation as a way to fulfill service hour requirements. 

We recommend that organizations place at the forefront what students/participants get out of these experiences beyond contributing time and classifications. Rather than creating busy work, we favor a model where participants take time to reflect on how their efforts (and the community’s collective efforts) are contributing to our understanding of our world and the broader universe. 

Here is one approach for constructing a productive and rewarding volunteer experience for your organization:

Step 1: Share this opportunity with your Organization

Email your organization to see if participation in Zooniverse can be used to fulfill volunteering or other participation requirements. Share this blog post with them so they understand what you would be doing and how you’ll ‘document’ your participation (see Step 8 below). 

Step 2: Register at Zooniverse.org

Create a Zooniverse account by clicking ‘Register’ in the upper-right of the Zooniverse.org homepage (only a name and email are required).

Registering is not required to participate in Zooniverse. But it is useful in this case in order to provide a record of participation.

Step 3: Zooniverse background info

Watch this brief animation and video for background/context about the Zooniverse, the world’s largest platform for people-powered research, with 100 active projects and 2 million people around the world participating. Every Zooniverse project is led by a different research team, spanning a wide range of subjects that include: identifying planets around distant stars (PlanetHunters.org), studying the impact of climate change on animals (SnapshotSafari.org) and plants (FloatingForests.org), tracking resistance to antibiotics (Bash the Bug), transcribing handwritten documents (antislaverymanuscripts.org), and more. The collective efforts of Zooniverse projects have resulted in over 200 research publications to date.

Step 4: Choose your project(s)

Choose from the full list of ~100 active Zooniverse projects (see zooniverse.org/projects) or choose from the curated lists of projects below that tend to work well with different age groups, as selected by the Zooniverse team: 

Step 5: Learn a bit about the project before diving in

Read the information on the project’s ‘About’ pages (‘Research’, ‘The Team’, ‘Results’, & ‘Education’) to learn more about the research and the team running the project.  For example: https://www.zooniverse.org/projects/mrniaboc/bash-the-bug/about

Step 6: Participate! 

Click on the ‘Classify’ tab of your chosen project to get started.  A brief tutorial provides instructions and guidance. For example: https://www.zooniverse.org/projects/mrniaboc/bash-the-bug/classify

Step 7: Reflection and Extension

Consider these Reflection Questions, or other similar questions.  The questions explore the ‘why’ behind this experience. Why do the researchers need your help? How might the results help science? Are you interested in participating in other projects of this type, and why or why not?

For Organizations: Consider sending these via a Google Form or other survey tool for participants to submit responses to these questions. Note: before using the example form above, make a copy of the Google form and send the survey from your own account to make sure you can access the responses.

Extension opportunities:

Each project has a  ‘Talk’ discussion forum associated with it (e.g., https://www.zooniverse.org/projects/mrniaboc/bash-the-bug/talk). This is where the researchers and participants from around the world chat with each other — asking questions about the science, weird things people see while classifying, new discoveries, & more. First, explore the discussion threads and check out some of the questions other people have asked. If you’re feeling comfortable, ask the researchers a question about the science, being a scientist, etc. You might start with a question you asked as part of the ‘Reflection Questions’ activity above. The researchers are keen to hear your questions and engage with you. Check back later to see the response, or watch for Talk email notifications, if you’ve enabled them.

Post-experience (a lifetime of engagement): Check out other Zooniverse projects and check out NASA’s Citizen Science project list and SciStarter for other citizen science opportunities. And please do share about citizen science with family and friends (peer networks make a BIG difference in what people try).

Step 8: Document your participation to fulfill your requirements

Once signed in at Zooniverse.org, you’ll see your display name and your total classification count. (If you hover over the doughnut-ribbon in the center top of the page, you’ll see the classification counts for each specific project you’ve participated in.)

Please note that there is no built-in time-tracker within Zooniverse. Many organizations encourage participants to use the number of classifications they’ve contributed as a proxy for time spent on the site. On average, a person contributes 20-75 classifications/hour on most projects (this ranges widely depending on the difficulty of the tasks, the number of tasks for a given classification, etc.). 

For example, if someone has done 100 classifications, you can estimate that they’ve spent ~2 hours classifying on Zooniverse; e.g., 2 hours x 50 classifications / hour = 100 classifications. The Organization should add ~45 minutes to this time estimate for the time it takes to carry out the additional ‘meta’ elements of the experience outlined above.  

Please note – because we are a small organization and 1000s of students each week are participating in Zooniverse as volunteers, we are not able to sign individual’s ‘certificates of completion’ or other records of that type for volunteer hours. Instead, organizations encourage their participants to take a screenshot of their signed-in Zooniverse.org page showing their personal stats. This screenshot serves as a proxy for documentation of your effort.

For Organizations: Consider using a Google Form or other survey instrument for participants to submit their classification count and a screenshot of their Zooniverse.org page. Note: make a copy of the Google form and send it from your account so you can access the responses.

Other Information

If you need to reference a 501(c)(3): 

While Chicago’s Adler Planetarium, one of the hosts of the Zooniverse web development team, is a 501(c)(3), the Zooniverse is not. Organizations that need to link explicitly to a 501(c)(3) for their volunteering efforts use the Adler Planetarium as the reference.  Documentation of the Adler Planetarium’s 501(c)(3) status is provided here.

Future Work:

We recognize it would be helpful to have an easier way to share participation information with organizations for these purposes (though this will need to be done in a very thoughtful way). Please note that because we are a grant-funded web development team, enhancements of this type take time to design, build and implement. If you or your organization have suggestions for how best to share this information, or are interested in helping to support this effort via collaborative grant-writing or otherwise, please let us know.

THANK YOU!

As always, please don’t hesitate to reach out to contact@zooniverse.org if you have any questions or suggestions. 

We Are Still here

These are strange times we live in. With many people ill or worried, and communities all over the world in lockdown or cutting out social contact in order to try and control the spread of the novel coronavirus, it’s hard to work out what the future holds.

The Zooniverse team – including our teams in Oxford and in Chicago – are all working from home, and we’re struggling to master how to communicate and work in this odd situation. So far we’ve encountered all sorts of weird glitches while trying to keep in touch.

Zoom backgrounds can be weird and terrifying, as demonstrated here by Sam.
Why am I the only one with a profile picture?

But we are still here! As we know lots of you are turning to Zooniverse for a distraction while your lives are disrupted, we’ve asked our research teams to pay particular attention to their projects and to be even more present online during this time. We’ll try and bring you more news from them over the next few weeks.

Anyway, if any of you would like to distract yourselves by taking part and contributing to one of our projects, we’ve made it easier to find a new project to dive into. The top of our projects page now highlights selected projects – they will change frequently, and might be topical, timely, particularly in need of your help – or just our favourites!

Zooniverse projects succeed because they’re the collective work of many thousands of you who come together to collaborate with our research teams – and a little bit of collective action in the world right now feels pretty good.

Look after yourselves, and see you in the Zooniverse.

Chris

Zooniverse Remote / Online Learning resources

As schools, workplaces, public spaces, and institutions across the globe close in response to COVID-19, we are aware that, for many people, online platforms like Zooniverse can function as a way to continue to have an impact and remain engaged with the world. 

We cannot thank you enough for participating in Zooniverse and creating a welcoming and supportive space for all. 

Below is a list of resources educators have used in classrooms that also work well remotely/online. Key to keep in mind is that Zooniverse projects are a great way to expose learners to new opportunities and ways of engaging in real research. These resources are meant to spark curiosity, learning, and exposure to research and the broader world. We encourage you to especially consider what students can gain from the process of participating. Remember: this is an opportunity for experiential learning, not a platform for creating busy work. 

Note – there is no age limit for participating in Zooniverse projects, but children under the age of 16 need parent or guardian approval before creating their own Zooniverse account (see here for more details).  

For 5-12 year olds:

  • Curated list of age-appropriate Zooniverse projects for younger learners (w/ brief descriptions)
  • Zooniverse-based Activity for 5-12 year olds
  • Classroom.zooniverse.org
    • Wildcam Labs
      • Designed for 11-13 year olds, but the content can easily scale down for younger audiences. 
      • Great way to engage if you love looking at photos of wild animals and want to investigate ecological questions. The interactive map allows you to explore trail camera data and filter and download data to carry out analyses and test hypotheses. 
      • Educators can set up private classrooms, invite students to join, curate data sets, and get access to the guided activities and supporting educational resources. 
      • Individual explorers also welcome – you don’t need to be part of a classroom to participate.
  • Planet Hunters Educators Guide
    • Designed for 11-13 year olds.
    • A Zooniverse – NASA collaboration through which students learn about citizen science, explore how astronomers search for planets around distant stars, participate directly in the search for exoplanets through PlanetHunters.org, and then design and draw their own planetary system.
    • Developed by Chicago’s Adler Planetarium Education Specialist Julie Feldt and Adler Director of Teen Programs Kelly Borden.
  • Notes from Nature Activity
    • Designed for 11-13 year olds.
    • Through this lesson students observe, record, and document specimens, become a part of the Zooniverse Notes from Nature project, transcribe specimens, connect art and science, and sketch birds in a science notebook.
    • Developed by teachers as part of StudentsDiscover.org 
  • Floating Forests: Teaching Young Children About Kelp and Climate Change
  • STEAM Squad Workbooks and Activities
    • Designed for 11-13 year olds
    • A series of 5 workbooks with science, humanities, and art activities. Release for free online in response to school closures.
    • The final activity in each workbook is participation in a Zooniverse project, with accompanying reflection questions.
    • Developed by Eleanor Spicer Rice, entomologist and writer, in collaboration with Zooniverse
  • A series of lesson plans using data, concepts and images from the Snapshot Wisconsin statewide trail camera project.

For teens and adults:

  • Curated list of Zooniverse projects (w/ brief descriptions)
  • Zooniverse-based Lesson Plan for teens and adults
  • Classroom.zooniverse.org
    • Wildcam Labs
      • Designed for middle school classrooms, but the content can easily scale up for older audiences. 
      • See description above.
    • Astro101 with Galaxy Zoo
      • Designed for undergraduate non-major introductory astronomy courses, but the content has been used in many high-school classrooms as well. 
      • Students learn about stars and galaxies through 4 half-hour guided activities and a 15-20 hour research project experience in which they analyze real data (including a curated Galaxy Zoo dataset), test hypotheses, make plots, and summarize their findings. 
      • Developed by Julie Feldt, Thomas Nelson, Cody Dirks, Dave Meyer, Molly Simon, and colleagues.
    • For both Wildcam and Astro101 Activities
      • Educators can set up private classrooms, invite students to join, curate data sets, and get access to the guided activities and supporting educational resources. 
      • Individual explorers also welcome – you don’t need to be part of a classroom to participate.
  • Planet Hunters Educators Guide
    • Designed for 11-13 year olds, but the content can easily scale up for older audiences. 
    • See description above.
  • Notes from Nature ‘WeDigBio’ Educational Resources
    • Videos showcasing the researchers
    • High School and Undergrad classroom lesson plans and resources
  • Notes from Nature Activity
    • Designed for 11-13 year olds, but the content can easily scale up for older audiences.
    • See description above. 
  • Snapshot Safari-based Lesson Plans and Interactive Timeline
    • Developed by University of Minnesota PhD student Jessica Dewey
  • Kelp Forest Ecology Lab
    • Through the Zooniverse FloatingForests.org project, researchers are striving to understand the impact of climate change on giant kelp forests, an indicator of the health of our oceans. In this lab, students analyze Floating Forest and other ocean data to explore their own research questions.
    • Developed by Cal State – Monterey Bay faculty Dr. Alison Haupt and colleagues
  • A series of lesson plans using data, concepts and images from the Snapshot Wisconsin statewide trail camera project.
  • NEH Teacher’s Guide for Digital Humanities and Online Education

Join the Conversation and Share Ideas:

We’d love to hear about your experiences with Zooniverse. Join the conversation in our ‘Talk’ discussion forum around Education and the Zooniverse. There’s a wonderful community there of formal and informal educators and students who are interested in sharing resources and ideas.

If you need a record of your students’ contributions:

You can keep track of how many classifications you’ve contributed if you register (providing a username and email address) within Zooniverse.org. Once signed in, at Zooniverse.org you’ll see your display name and your total classification count. If you hover over the circle surrounding your avatar, you’ll see the classification counts for each specific project you’ve participated in. Some teachers have their students share a screenshot of this zooniverse.org page as a record of contributions. 

Please note that there is no built-in time-tracker within Zooniverse. However, participants can use the number of classifications they’ve contributed as a proxy for time spent on the site. On average, a person contributes 20-75 classifications/hour on most projects. So, for example, if a student has done 100 classifications, you can estimate that they’ve spent ~2 hours classifying on Zooniverse; e.g., 2 hours x 50 classifications / hour = 100 classifications. 

Other Opportunities:

Check out NASA’s Citizen Science project list and SciStarter for other citizen science opportunities.

Cross-Post — Lessons from Space: Why Delay a Launch?

Today’s cross-post is from ChelseaTroy.com, blog site of one of our Zooniverse developers. Chelsea writes codes for open source projects like our Zooniverse Citizen Science Mobile App and NASA Landsat Image Processing Pipeline. She also teaches Mobile Software Development at the Master’s Program in Computer Science at the University of Chicago.

A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 11:50 p.m. EST on March 6, 2020, carrying the uncrewed cargo Dragon spacecraft on its journey to the International Space Station for NASA and SpaceX’s 20th Commercial Resupply Services (CRS-20) mission. Dragon will deliver more than 5,600 pounds of science investigations and cargo to the orbiting laboratory. Credit: NASA and https://en.wikipedia.org/wiki/File:CRS-20_launch.jpg

Chelsea was selected as a NASA Social appointee to attend the launch of last week’s CRS-20 cargo resupply mission to the International Space Station (this included attending the launch of the SpaceX Falcon 9 rocket and Dragon spacecraft, meeting w/ NASA’s social media team, touring NASA facilities at Kennedy, meeting with experts, and more). Check out all her posts on instagram, twitter, and chelseatroy.com.

This post of Chelsea’s, on why the launch was delayed, resonated in particular with us as a web development team. Across many fields, the lessons and insights around the role of deadlines, the value of redundancy, learning from past experiences/mistakes to make better predictions and mitigate risk, etc. apply.

Check out the full post at https://chelseatroy.com/2020/02/27/lessons-from-space-why-delay-a-launch/. Enjoy!